Reorientation of Space Mu Ltib
نویسندگان
چکیده
The problem of reorientation of planar multibody systems in space with angular momentum preserving controls is studied. We consider rest-to-rest maneuvers for the absolute orientation of a multibody system which maintains zero angular momentum. We propose a control strategy for a system which is composed of (1) N planar rigid bodies interconnected by ideal pin joints in the form of an open kinematic chain, (2) joint torque motors which actuate the motions at the joints. The control strategy uses holonomy or geometric phase relationships. A key observation is that the holonomy, the extent to which a loop in the shape space (relative angle space) fails to be lifted t o the configuration space (absolute angle space), depends only on the path traversed in the shape space and not on the time history of the joint angular velocities. The control strategy first transfers a given initial condition to the origin of the shape phase space. The control strategy then causes the state to track a loop in the shape space that achieves the desired holonomy. A feedback controller which implements this strategy thus accomplishes the desired objective. The proposed strategy is demonstrated by computer simulations of a three-link example. The theory developed in the paper is applicable to a variety of multibody control problems in space, including space robotics, astronaut maneuvers, satellite antenna deployment, etc., which are briefly described.
منابع مشابه
Some relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملEmbedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملWhen is the ring of real measurable functions a hereditary ring?
Let $M(X, mathcal{A}, mu)$ be the ring of real-valued measurable functions on a measure space $(X, mathcal{A}, mu)$. In this paper, we characterize the maximal ideals in the rings of real measurable functions and as a consequence, we determine when $M(X, mathcal{A}, mu)$ is a hereditary ring.
متن کاملEndoscopy and the cohomology of $GL(n)$
Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field. Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006